17 research outputs found

    Joint Computation Offloading and Prioritized Scheduling in Mobile Edge Computing

    Get PDF
    With the rapid development of smart phones, enormous amounts of data are generated and usually require intensive and real-time computation. Nevertheless, quality of service (QoS) is hardly to be met due to the tension between resourcelimited (battery, CPU power) devices and computation-intensive applications. Mobileedge computing (MEC) emerging as a promising technique can be used to copy with stringent requirements from mobile applications. By offloading computationally intensive workloads to edge server and applying efficient task scheduling, energy cost of mobiles could be significantly reduced and therefore greatly improve QoS, e.g., latency. This paper proposes a joint computation offloading and prioritized task scheduling scheme in a multi-user mobile-edge computing system. We investigate an energy minimizing task offloading strategy in mobile devices and develop an effective priority-based task scheduling algorithm with edge server. The execution time, energy consumption, execution cost, and bonus score against both the task data sizes and latency requirement is adopted as the performance metric. Performance evaluation results show that, the proposed algorithm significantly reduce task completion time, edge server VM usage cost, and improve QoS in terms of bonus score. Moreover, dynamic prioritized task scheduling is also discussed herein, results show dynamic thresholds setting realizes the optimal task scheduling. We believe that this work is significant to the emerging mobile-edge computing paradigm, and can be applied to other Internet of Things (IoT)-Edge applications

    Chemical ordering suppresses large-scale electronic phase separation in doped manganites

    Get PDF
    For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La1-yPry)1-xCaxMnO3 (LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal–insulator transition that is ~100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature

    Enhanced biohydrogen production from nutrient-free anaerobic fermentation medium with edible fungal pretreated rice straw

    No full text
    An edible fungal pretreatment of rice straw was proposed for enhanced hydrogen production while reducing the chemical cost for traditional biological hydrogen production from lignocellulose. In this research, rice straw was pretreated by edible fungus Gymnopus contrarius J2 at room temperature under static conditions for 15 d at first. The highest hydrogen yield of 5.71 mmol g(-1)-pretreated rice straw was obtained, 74% higher than the counterpart without pretreatment. Chemical composition analysis demonstrated that lignin removal was up to 22.4% with a little cellulose and hemicellulose loss of 13.3% and 17.1%, respectively, which is in favor of hydrogen production. Additionally, microscopic structure observation combined with FT-IR and XRD analysis illustrated the structural disruption of pretreated rice straw, and the crystalline index of rice straw can be decreased by 46.2% after pretreatment, which might account for the hydrogen production enhancement. The results also indicated that the hydrogen yield from pretreated rice straw was not affected without the addition of yeast extract and vitamins to the culture medium, which is substantial evidence that edible fungal pretreated rice straw could provide prerequisite nutrients for hydrogen-producing bacteria. Overall, edible fungal pretreatment has great potential under the mild conditions for high hydrogen yields and thus leads to a new direction to realize a highly efficient and economically competitive biological hydrogen production process from lignocellulosic biomass

    Correction: enhanced biohydrogen production from nutrient-free anaerobic fermentation medium with edible fungal pretreated rice straw (vol 8, pg 22924, 2018)

    No full text
    Correction for Enhanced biohydrogen production from nutrient-free anaerobic fermentation medium with edible fungal pretreated rice straw' by Tao Sheng et al., RSC Adv., 2018, 8, 22924-22930

    Bioaugmented Hydrogen Production from Lignocellulosic Substrates Using Co-Cultures of Shigella flexneri str. G3 and Clostridium acetobutylicum X9

    Get PDF
    Bioaugmented fermentation of cellulosic substrates to produce biohydrogen via co-culture of isolated strains was investigated. Two mesophilic anaerobic bacterial strains, known for their ability to hydrolyze cellulosic substrates, were taken in consideration: Shigella flexneri str. G3, which shows high cellulolytic activity but cannot ferment oligosaccharides to bioenergy, and Clostridium acetobutylicum X9, able to convert microcrystalline cellulose into hydrogen. The ability of the selected strains to effectively convert different cellulosic substrates to hydrogen was tested on carboxymethyl cellulose (AVICEL), as well as pretreated lignocellulosic material such as Bermuda grass, corn stover, rice straw, and corn cob. Results showed that co-culture of Shigella flexneri str G3 and Clostridium acetobutylicum X9 efficiently improved cellulose hydrolysis and subsequent hydrogen production from carboxymethyl cellulose. Hydrogen production yield was enhanced from 0.65 mol H2 (mol glucose)-1 of the X9 single culture to approximately 1.5 mol H2 (mol glucose)-1 of the co-culture, while the cellulose degradation efficiency increased from 50% to 95%. Co-culture also efficiently improved hydrogen production from natural lignocellulosic materials (which was up to 4-5 times higher than mono-culture with X9), with the highest performance of 24.8 mmol L-1 obtained on Bermuda grass. The results demonstrate that co-culture of S. flexneri G3 and C. acetobutylicum X9 was capable of efficiently enhance cellulose conversion to hydrogen, thus fostering potential biofuel applications under mesophilic conditions

    XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles

    Get PDF
    The interaction between endothelial cells (ECs) and smooth muscle cells (SMCs) plays a critical role in the maintenance of vessel wall homeostasis. The X-box binding protein 1 (XBP1) plays an important role in EC and SMC cellular functions. However, whether XBP1 is involved in EC-SMC interaction remains unclear. In this study, In vivo experiments with hindlimb ischemia models revealed that XBP1 deficiency in SMCs significantly attenuated angiogenesis in ischemic tissues, therefore retarded the foot blood perfusion recovery. In vitro studies indicated that either overexpression of the spliced XBP1 or treatment with platelet derived growth factor-BB up-regulated miR-150 expression and secretion via extracellular vesicles (EVs). The XBP1 splicing-mediated up-regulation of miR-150 might be due to increased stability. The SMC-derived EVs could trigger EC migration, which was abolished by miR-150 knockdown in SMCs, suggesting miR-150 is responsible for SMC-stimulated EC migration. The SMC-derived miR-150-containing EVs or premiR-150 transfection increased vascular endothelial growth factor (VEGF)-A mRNA and secretion in ECs. Both inhibitors SU5416 and LY294002 attenuated EVs-induced EC migration. This study demonstrates that XBP1 splicing in SMCs can control EC migration via SMC derived EVs-mediated miR-150 transfer and miR-150-driven VEGF-A/VEGFR/PI3K/Akt pathway activation, thereby modulating the maintenance of vessel wall homeostasis

    Vegetation disturbances characterization in the Tibetan Plateau from 1986 to 2018 using Landsat time series and field observations

    No full text
    Disturbances in vegetated land could dramatically affect the process of vegetation growth and reshape the land cover state. The overall greenup of vegetation on the Tibetan Plateau (TP) has almost served as a consensus to date. However, we still lack consistent acquisitions on the timing, the spatial patterns, and the temporal frequency of vegetation disturbance over the TP, limiting the capacity for planning land management strategies. Therefore, we explored the spatiotemporal pattern and variation of vegetation disturbances across the TP during the past decades and analyzed the disturbance agents. We utilized 37-year Landsat time series images and field observations coupled with a temporal segmentation approach to characterize the spatiotemporal pattern of vegetation disturbances across the TP for the period 1986–2018. The results from this study revealed that 75.71 M ha (accounting for 29.34% of TP’s area) vegetation area underwent at least one disturbance, of which 8.44 M ha area ever experienced large-scale disturbances (disturbance area greater than 0.9 ha and disturbance magnitude (the difference between the spectral value of pre-disturbance and that of post-disturbance) over 0.2). Further, the spatial distributions of these large-scale disturbances varied over time: before 2002, the disturbed sites were evenly distributed over the southeast part of the TP probably induced by overgrazing and unscientific livestock management, while after 2002, most disturbances were concentrated in the south of the Yarlung Tsangpo, mainly caused by anthropogenic activities, such as urban area, roadways, railway, and water control projects. This study presents an effort to characterize vegetation disturbances and their variations over the past decades on the TP, which provides crucial insights toward a complete understanding of vegetation dynamics and its causal relationship with human activities

    Isolation and Characterization of Shigella flexneri G3, Capable of Effective Cellulosic Saccharification under Mesophilic Conditions ▿ †

    No full text
    A novel Shigella strain (Shigella flexneri G3) showing high cellulolytic activity under mesophilic, anaerobic conditions was isolated and characterized. The bacterium is Gram negative, short rod shaped, and nonmotile and displays effective production of glucose, cellobiose, and other oligosaccharides from cellulose (Avicel PH-101) under optimal conditions (40°C and pH 6.5). Approximately 75% of the cellulose was hydrolyzed in modified ATCC 1191 medium containing 0.3% cellulose, and the oligosaccharide production yield and specific production rate reached 375 mg g Avicel−1 and 6.25 mg g Avicel−1 h−1, respectively, after a 60-hour incubation. To our knowledge, this represents the highest oligosaccharide yield and specific rate from cellulose for mesophilic bacterial monocultures reported so far. The results demonstrate that S. flexneri G3 is capable of rapid conversion of cellulose to oligosaccharides, with potential biofuel applications under mesophilic conditions
    corecore